PowerBank and Orbit AI to Launch the First Orbital Cloud for Space-Based Digital Network

Like
Liked

Date:

PowerBank and Orbit AI to Launch the First Orbital Cloud for Space-Based Digital Network

PowerBank Corporation and Orbit AI are preparing to launch a new project that aims to bring AI computing, communication systems, and blockchain verification into space. The companies plan to build the “Orbital Cloud“, a network of satellites. They can send data, run AI programs, and verify digital transactions while circling the Earth. Their first satellite, DeStarlink Genesis-1, is expected to launch in December 2025.

The project combines renewable energy, satellite networks, and advanced computing. It also reflects PowerBank’s move from traditional solar projects into digital infrastructure.

Dr. Richard Lu, CEO of PowerBank, said:

“The next frontier of human innovation isn’t just in space exploration — it’s in building the infrastructure of tomorrow above the Earth. The combined markets for orbital satellites, in-orbit data centers, blockchain verification, and solar-powered digital infrastructure are projected to exceed $700 billion over the next decade. By integrating solar energy with orbital computing, PowerBank is helping create a globally sovereign, AI-enabled digital layer in space — a system that can help power finance, communications, and critical infrastructure.”

Orbit AI will supply satellite technology and computing systems. PowerBank will provide solar energy and thermal control solutions that will allow the satellites to operate in space.

A New Type of Digital Infrastructure in Space

The Orbital Cloud brings together two main systems developed by Orbit AI. The first is DeStarlink, a decentralized network of satellites. Like current global internet constellations, it avoids relying on one operator or nation. The second is DeStarAI, a group of orbital AI data centers that use high-performance hardware to process data in low Earth orbit.

Orbit AI plans to combine these systems into one connected layer. This layer will allow satellites to store data, run AI models, and send information globally. It also verifies blockchain transactions.

The satellites work in space, so they don’t face typical limits found on Earth. They avoid issues like cooling needs, power shortages, and local regulations.

PowerBank plans to support this system by supplying solar arrays and cooling control technologies. These systems aim to power the satellites and help them manage the extreme temperatures in space. The company sees this as part of its move into digital assets and data centers, where solar energy helps meet the growing demand for AI and cloud computing.

How the Orbital Cloud Works

The Orbital Cloud works by placing computing hardware, communication tools, and blockchain systems together on satellites. These satellites move in low Earth orbit, which allows them to send data with low delay and maintain constant coverage.

The system uses solar panels to power the AI computers on board. Space offers steady sunlight, which allows continuous energy generation. Because there is no atmosphere in orbit, the satellites can also release heat more easily, which helps the computers stay cool. This reduces the need for complex cooling buildings or large data center facilities on Earth.

Genesis-1, the first test satellite, will include an Ethereum wallet and a blockchain node. This means it can verify transactions from orbit. It will also carry an initial AI payload that can run basic inference tasks. As more satellites launch, they will connect and form a larger network.

As the system expands, Orbit AI will let users send data, run AI programs, or request blockchain verification via the Orbital Cloud. PowerBank and Orbit AI expect this system to support industries such as finance, communication, defense, and digital identity systems.

Why Orbital Computing Is Becoming a Multi-Billion-Dollar Market

Several fast-growing sectors support the idea behind the Orbital Cloud. The companies point to forecasts showing strong growth in satellite technology, space-based data services, AI computing, and renewable energy infrastructure. Together, these sectors may form a market worth more than US$700 billion over the next decade.

Industry research highlights several key trends:

  • Orbital infrastructure is expected to grow from US$13.5 billion in 2024 to US$21.3 billion by 2029.

  • The global satellite market may reach US$615 billion by 2032.

  • In-orbit data centers may expand from US$1.77 billion in 2029 to US$39.1 billion by 2035.

  • Satellite data services may grow from about US$12 billion in 2024 to more than US$55 billion by 2034.

orbital data center market growth 2035

These markets grow due to rising demand for AI processing. Digital sovereignty also needs to drive them. Plus, the use of blockchain systems is on the rise. More countries and companies want secure, independent digital networks, but terrestrial infrastructure can’t keep up. So, space-based systems could become more important.

Moreover, orbital data centers avoid land, water, and grid constraints while accessing uninterrupted solar energy and natural radiative cooling. Companies like Axiom Space, Starcloud, Google, and ADA Space are also into this. These trends reinforce the commercial potential behind PowerBank and Orbit AI’s orbital ambitions.

PowerBank’s leadership sees this shift as an opportunity to combine solar infrastructure with the next wave of digital systems. Orbit AI’s leadership describes the Orbital Cloud as a way to build an autonomous digital layer that does not depend on Earth-based networks. Both companies view the partnership as a step toward long-term commercial growth in space technology.

The Hardware Stack Powering the Orbital Cloud

The project plans to use hardware and technologies from several global leaders. Orbit AI and PowerBank intend to work with companies that provide GPUs, satellite materials, launch systems, and blockchain tools. These parts work together to create the computing, communication, and verification functions of the Orbital Cloud.

The planned major contributors are:

  • NVIDIA for AI hardware.

  • Ethereum Foundation for blockchain frameworks.

  • Galaxy Space for satellite components.

  • Galactic Energy for launch technologies.

  • SparkX Satellite for building the Genesis-1 satellite.

  • AscendX Aerospace for materials for future satellite structures.

NVIDIA was chosen for its expertise in AI hardware, as shown by its record-breaking  earnings on November 19, 2025: $57 billion in quarterly revenue, driven by demand for its accelerators and new Blackwell GPUs. This technology surge confirms NVIDIA’s central role in powering next-generation AI networks both on Earth and in space – supporting projects like the Orbital Cloud as industries rapidly pivot to scalable, climate-resilient infrastructure.

These partners support different stages of the project. Some focus on computing power while others provide communications gear. Some contribute launch vehicles or satellite parts. This approach allows PowerBank and Orbit AI to blend proven technologies in their orbital system. They don’t have to build every part from scratch.

Because of this, the project uses high-performance hardware and well-tested satellite structures. This reduces risk during early launches and also allows companies to focus on scaling the system after the first satellites work well.

Funding Roadmap and Key Launch Targets

PowerBank plans to begin its involvement with an initial US$50,000 investment in Orbit AI. The company also aims to invest up to US$10 million. In return, it can get an equity stake of 2% to 20%, depending on the final terms and how well the Genesis-1 launch performs.

Both companies have outlined a development timeline that runs from 2025 to 2030. The key steps are:

  • Launch Genesis-1 in late 2025.

  • Deploy more satellites in 2026.

  • Build a complete constellation by 2027 and 2028.

From 2028 to 2030, the companies plan to introduce autonomous network operations, where satellites can coordinate, compute, and verify on their own without heavy ground control.

If these milestones succeed, the Orbital Cloud could be one of the first large-scale orbital computing systems. It could also influence how countries, companies, and developers design digital services in the future.

The post PowerBank and Orbit AI to Launch the First Orbital Cloud for Space-Based Digital Network appeared first on Carbon Credits.

ALT-Lab-Ad-1

Recent Articles